Unconditionally Optimal Error Estimates of a Crank--Nicolson Galerkin Method for the Nonlinear Thermistor Equations
نویسندگان
چکیده
منابع مشابه
L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations
We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...
متن کاملA posteriori error estimates for the Crank-Nicolson method for parabolic equations
Abstract. We derive optimal order a posteriori error estimates for time discretizations by both the Crank–Nicolson and the Crank–Nicolson–Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second order Crank–Nicolson reconstructions of the piecewise linear approximate solutions. The...
متن کاملAnalysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations
Article history: Received 23 April 2015 Received in revised form 3 February 2016 Accepted 31 March 2016 Available online xxxx I would like to dedicate this work to my Father, Ahmed Baccouch, who unfortunately passed away during the completion of this work
متن کاملExponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrödinger equations
This paper studies a central difference and quartic spline approximation based exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems of one-dimensional nonlinear Schrödinger equations and twodimensional nonlinear Schrödinger equations. A local extrapolation is employed to achieve a fourth order accuracy in time. The numerical method is proven to be highly efficient an...
متن کاملOptimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations
Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2014
ISSN: 0036-1429,1095-7170
DOI: 10.1137/120892465