Unconditionally Optimal Error Estimates of a Crank--Nicolson Galerkin Method for the Nonlinear Thermistor Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

A posteriori error estimates for the Crank-Nicolson method for parabolic equations

Abstract. We derive optimal order a posteriori error estimates for time discretizations by both the Crank–Nicolson and the Crank–Nicolson–Galerkin methods for linear and nonlinear parabolic equations. We examine both smooth and rough initial data. Our basic tool for deriving a posteriori estimates are second order Crank–Nicolson reconstructions of the piecewise linear approximate solutions. The...

متن کامل

Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations

Article history: Received 23 April 2015 Received in revised form 3 February 2016 Accepted 31 March 2016 Available online xxxx I would like to dedicate this work to my Father, Ahmed Baccouch, who unfortunately passed away during the completion of this work

متن کامل

Exponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrödinger equations

This paper studies a central difference and quartic spline approximation based exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems of one-dimensional nonlinear Schrödinger equations and twodimensional nonlinear Schrödinger equations. A local extrapolation is employed to achieve a fourth order accuracy in time. The numerical method is proven to be highly efficient an...

متن کامل

Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations

Abstract. In this paper, we present the optimal L2-error estimate ofO(hk+1) for polynomial elements of degree k of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2014

ISSN: 0036-1429,1095-7170

DOI: 10.1137/120892465